Innovation in Photovoltaic Technology

Nancy Carlisle, NREL June 8, 2001

What is Photovoltaics?

- Photovoltaics is a solid-state technology that converts solar radiation directly into direct current (DC) electricity
 - Durable: It requires no moving parts; 25 yr power warranty
 - Renewable: It requires only the sun as fuel; runs on daylight
 - Zero Emissions: It creates virtually no pollutants over its life cycle
 - Material Intensity: Silicon is an abundant material.
 - Recycling: Solar-grade silicon is electronics industry scrap
 - Energy Intensity: 1-4 Yr Energy Payback vs. Infinite for Fossil

PV Cell - Cross-sectional View

Megawatts of PV Cell/Module Production 1988-2000

PV Cells

PV Cells are wired in series to increase voltage...

and in parallel to increase current

PV is Modular

ells are assembled into modules... and modules into arrays.

Types of PV Arrays

• Fixed

- Remote
- Building-integrated

• Tracking

- single axis
- double axis

Fixed Tilt and Tracking

• Fixed Tilt Facing South

 One Axis Tracking around North-South axis tilted up from horizontal, follows sun azimuth

 Two Axis Tracking both azimuth and altitude of sun around two axes

Cystalline Silicon

Thin Film Technology

morphous Silicon (a-Si) admium Telluride (CdTe) opper Indium Diselenide (CulnSe or CIS)

'arious levels of light transmission tching available

Simple Direct-Current System

Types of Photovoltaic Power Generator

Configurations

- Utility Inter-connected System
- PV Integrated into UPS system
- Small Stand-Alone DC System
- Stand-Alone AC-DC System
- Stand-Alone AC Battery System
- Hybrid Generator Combination: PV, Wind, Propane, Diesel,

Battery Bank

Inverter Technology

- Central Inverter
- Master Slave Configuration
- String Inverter
- AC Micro-Inverter
- Cell Inverter

PV/Propane Hybrid Example: Joshua Tree National Park

- 20.5 kW PV Array
- •613 kWh battery bank
- 35 kW propane generator

• \$273,000 cost financed by Southern California Edison under 15 year tariff

NREL: PV and Passive Solar

System Sizing and Design

- Pre-design tradeoffs
- Load calculation
- Evaluate efficiency options
- Solar resource assessment
- Rough system sizing
- Components selection
- Performance prediction
- Final system design & cost estimation
 - Specification preparation
 - Prepackaged versus custom design

How much PV do I need?

Electricity Consumption

Match PV production to your electric consumption. Size your PV system to produce 100% of your electricity or a smaller percentage.

Available Space for Array

Match PV array size to your roof space. You may be surprised how much or how little your south-facing roof gets full sun all day. Trees, chimneys, vents and other buildings can block the sun or make array installation difficult.

The Budget

Match your PV system cost to your budget. PV modules are about half the system cost. Combiner box, power center, controller, inverter, battery bank, wiring

	Btu/ft²/d
2. 8 - 3.3	8 75 - 1 0 5 0
3.3 - 3. 8	1050 - 1225
3. 8 - 4.4	1225 - 1 400
4.4 - 5. 0	1400 - 1575
5. 0 - 5. 6	1 575 175 0
5. 6 - 6 .1	1750 1 9 25
6.1 - 6. 7	1 9 25 - 21 00
6 .7 - 7.2	21 00 - 2275
7.2 - 7. 0	2275 2 4 5 0
> 7. 8	>2 4 5 0
	3.3 - 3.8 3.8 - 4.4 4.4 - 5.0 5.0 - 5.6 5.6 - 6.1 6.1 - 6.7 6.7 - 7.2 7.2 - 7.0

Solar Energy Resource

Annual Average Daily Horizontal Solar Radiation

Solar Insolation

Location	<u>I Max</u>	I Ave
Honolulu, HI	6.5	5.5
Hilo, HI	5.2	4.8
Kahului, HI	6.3	5.8
Las Vegas, NV	7.4	6.5
Boston, MA	5.6	4.6
Denver, CO	6.1	5.5
Jacksonville, FL	6.1	4.9
Sacramento, CA	7.2	5.5
Seattle, WA	5.7	3.7
Washington, DC	5.7	4.7

(kWh/m2/day = sun hours/day)

www.nrel.gov

PV Design Tools

- System Sizing
- System Configuration
- On grid vs. Off grid
- Est. Power Output
- Building Simulations
- Shading
- Temperature & Thermal Performance
- Economic Analysis
- Avoided Emissions
- Building Energy Load Analysis
- Meteorological Data
- Library of Modules, Batteries & Inverters

Available Software

- PVSYST
- PV DESIGN PRO
- WATSUN PV
- PV CAD
- PV FORM
- BLCC
- HOMER
 - **ENERGY-10**
- AWNSHADE

PV Design Tools

- DOE Building Energy Software Tools Directory:
 - Energy Simulation Toolshttp://www.eren.doe.gov/buildings/tools directory
- UCLA Schools of Arts and Architecture:
 - Energy Tools Design Directory
 http://www.aud.ucla.edu/energy-design-tools
- Seattle Energy Works
 - http://www.energysoftware.com

economics

Installed Average Cost

- \$100/watt 1970s
- \$20/watt 1984
- \$12/watt 1990
- \$6-\$8/watt 2000

Combine Incentives

- Net Metering: Utility compensation for electricity at retail rates or avoided costs
- Tax Credits
 - State and/or Federal
- Low Interest Financing
- Leasing or purchasing green power from host system
- State Buy-downs/rebates
- Utility Incentive Programs
- Economies of Scale (100kW+)

economics

Costs

- Design
- PV laminates
- Inverter (s)
- BOS
- Installation
- Interconnection
- Battery Storage

Benefits

- Electricity
- Avoided Environmental Emissions
- Reliable Power linked with UPS system
- Thermal Energy Benefits
- Public RelationsBenefits
- Construction Material Replacement Value

Warranties

- Inverter 5 years
- Modules 20-25 years
 - Power production
- Systems 12 months
 - Extended warranties optional (e.g. 5 years)

DC PV System Example: PJKK Federal Building, HI

- 2 solar panels per lamp with peak output of 96 watts
- 39 Watt fluorescent lamps, 2500 lumens
- 90 amp-hour battery powers 12 hours per night
- ~\$2500 per light

Utility-Connected PV Example: Presidio Thoreau Center

- Building-Integrated Photovoltaics
- 1.25 kW PV Array
- Spacing between cells admits daylight into entry atrium below

Summary

- There are many innovative examples of BIPV in architecture today
- The costs have dropped dramatically
- BIPV offers imaginative solutions, as one part of a renewable portfolio of solutions, to our energy problems